Efficient electrochemical remediation of microcystin-LR in tap water using designer TiO2@carbon electrodes
نویسندگان
چکیده
Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions).
منابع مشابه
Determination of microcystin-LR in drinking water using UPLC tandem mass spectrometry-matrix effects and measurement.
A simple detection method using ultra-performance liquid chromatography electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS-MS) coupled with the sample dilution method for determining trace microcystin-LR (MC-LR) in drinking water is presented. The limit of detection (LOD) was 0.04 µg/L and the limit of quantitation (LOQ) was 0.1 µg/L. Water matrix effects of ionic strength, dissolved...
متن کاملCarbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR.
A sensitive electrochemical immunosensor was proposed by functionalizing single-walled carbon nanohorns (SWNHs) with analyte for microcystin-LR (MC-LR) detection. The functionalization of SWNHs was performed by covalently binding MC-LR to the abundant carboxylic groups on the cone-shaped tips of SWNHs in the presence of linkage reagents and characterized with Raman spectroscopy, X-ray photoelec...
متن کاملOptimization and Modeling of Microcystin-LR Degradation by TiO2 Photocatalyst Using Response Surface Methodology
Introduction: Microcystin-leucine arginine (MC-LR) is a toxin with harmful effects on the liver, kidney, heart, and gastrointestinal tract. So, effective removal of MC-LR from water resources is of great importance. The aim of this study was to remove microcystin-LR (MC-LR) from aqueous solution by Titanium Dioxide (TiO2). Materials and Methods: In the present study, TiO2, as a semiconductor, ...
متن کاملElectrochemical Flow-ELISA for Rapid and Sensitive Determination of Microcystin-LR Using Automated Sequential Injection System
An amperometric immunoanalysis system based on monoclonal antibodies immobilized on Sepharose beads and packed into a micro-immunocolumn was developed for the quantification of microcystin-LR. Microcystin-LR (MCLR) was used as a reference microcystin variant. Inside the immunocolumn, free microcystins and microcystin-horseradish peroxidase (tracer) were sequentially captured by the immobilized ...
متن کاملElectrochemical Aptatoxisensor Responses on Nanocomposites Containing Electro-Deposited Silver Nanoparticles on Poly(Propyleneimine) Dendrimer for the Detection of Microcystin-LR in Freshwater
A sensitive and reagentless electrochemical aptatoxisensor was developed on cobalt (II) salicylaldiimine metallodendrimer (SDD-Co(II)) doped with electro-synthesized silver nanoparticles (AgNPs) for microcystin-LR (L, l-leucine; R, l-arginine), or MC-LR, detection in the nanomolar range. The GCE|SDD-Co(II)|AgNPs aptatoxisensor was fabricated with 5' thiolated aptamer through self-assembly on th...
متن کامل